Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.276
Filtrar
1.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565538

RESUMEN

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Asunto(s)
Multiómica , Virosis , Virus , Animales , Humanos , Ratones , Perfilación de la Expresión Génica/métodos , Metabolómica , Proteómica/métodos , Virosis/inmunología , Interacciones Huésped-Patógeno
2.
Virol J ; 21(1): 78, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566231

RESUMEN

Chronic obstructive pulmonary disease (COPD) affects over 250 million individuals globally and stands as the third leading cause of mortality. Respiratory viral infections serve as the primary drivers of acute exacerbations, hastening the decline in lung function and worsening the prognosis. Notably, Human Parainfluenza Virus type 3 (HPIV-3) is responsible for COPD exacerbations with a frequency comparable to that of Respiratory Syncytial Virus and Influenza viruses. However, the impact of HPIV-3 on respiratory epithelium within the context of COPD remains uncharacterized.In this study, we employed in vitro reconstitution of lower airway epithelia from lung tissues sourced from healthy donors (n = 4) and COPD patients (n = 5), maintained under air-liquid interface conditions. Through a next-generation sequencing-based transcriptome analysis, we compared the cellular response to HPIV-3 infection.Prior to infection, COPD respiratory epithelia exhibited a pro-inflammatory profile, notably enriched in canonical pathways linked to antiviral response, B cell signaling, IL-17 signaling, and epithelial-mesenchymal transition, in contrast to non-COPD epithelia. Intriguingly, post HPIV-3 infection, only non-COPD epithelia exhibited significant enrichment in interferon signaling, pattern recognition receptors of viruses and bacteria, and other pathways involved in antiviral responses. This deficiency could potentially hinder immune cell recruitment essential for controlling viral infections, thus fostering prolonged viral presence and persistent inflammation.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Virus Sincitial Respiratorio Humano , Virosis , Virus , Humanos , Virus de la Parainfluenza 3 Humana , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Epitelio , Antivirales/uso terapéutico
3.
J Infect Public Health ; 17(5): 922-928, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579539

RESUMEN

BACKGROUND: The surveillance of respiratory pathogens in rural areas of West Africa has, to date, largely been focussed on symptoms. In this prospective study conducted prior to the COVID-19 pandemic, we aimed to assess the asymptomatic prevalence of respiratory pathogen carriage in a group of individuals living in a rural area of Senegalese. METHODS: Longitudinal follow up was performed through monthly nasopharyngeal swabbing during the dry season and weekly swabbing during the rainy season. We enrolled 15 individuals from the village of Ndiop. A total of 368 nasopharyngeal swabs were collected over a one-year period. We investigated the prevalence of 18 respiratory viruses and eight respiratory bacteria in different age groups using singleplex and multiplex PCR. RESULTS: In total, 19.56% of the samples (72/368) were positive for respiratory viruses and 13.60% of the samples (50/368) were positive for respiratory bacteria. Coronaviruses (19/72, 26.39%), adenoviruses (17/72, 23.61%), rhinoviruses (14/72, 19.44%), Streptococcus pneumoniae (17/50, 34%), and Moraxella catarrhalis (15/50, 30%) were the most frequently detected viruses. Interestingly, the carriage of respiratory pathogens was shown to be more frequent during the rainy season, as pluviometry was shown to be positively associated with the occurrence of respiratory viruses such as influenza (P = .0078, r2 =.523) and RSV (P = .0055, r2 =.554). CONCLUSIONS: Our results show a non-negligible circulation of respiratory pathogens in a rural area in Senegal (West Africa) with an underestimated proportion of asymptomatic individuals. This study highlights the fact that the circulation of viruses and bacteria in the community has been overlooked.


Asunto(s)
Infecciones del Sistema Respiratorio , Virus , Humanos , Lactante , Estaciones del Año , Senegal/epidemiología , Estudios Prospectivos , Pandemias , Nasofaringe , Bacterias
4.
Anal Chem ; 96(15): 5752-5756, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38560822

RESUMEN

Viruses are the primary cause of many infectious diseases in both humans and animals. Various testing methods require an amplification step of the viral RNA sample before detection, with quantitative reverse transcription polymerase chain reaction (RT-qPCR) being one of the most widely used along with lesser-known methods like Nucleic Acid Sequence-Based Amplification (NASBA). NASBA offers several advantages, such as isothermal amplification and high selectivity for specific sequences, making it an attractive option for low-income facilities. In this research, we employed a single electrochemical biosensor (E-Biosensor) designed for potentially detecting any virus by modifying the NASBA protocol. In this modified protocol, a reverse primer is designed with an additional 22-nucleotide sequence (tag region) at the 5'-end, which is added to the NASBA process. This tag region becomes part of the final amplicon generated by NASBA. It can hybridize with a single specific E-Biosensor probe set, enabling subsequent virus detection. Using this approach, we successfully detected three different viruses with a single E-Biosensor design, demonstrating the platform's potential for virus detection.


Asunto(s)
Técnicas Biosensibles , Virus , Animales , Humanos , Sensibilidad y Especificidad , Replicación de Secuencia Autosostenida/métodos , ARN Viral/genética , ARN Viral/análisis , Virus/genética , Técnicas de Amplificación de Ácido Nucleico
5.
CNS Drugs ; 38(5): 349-373, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580795

RESUMEN

Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central , Virus , Humanos , Enfermedades Virales del Sistema Nervioso Central/tratamiento farmacológico , Sistema Nervioso Central , Encéfalo , Barrera Hematoencefálica , Antivirales/farmacología , Antivirales/uso terapéutico
6.
Front Cell Infect Microbiol ; 14: 1334351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567020

RESUMEN

Most tick-borne viruses (TBVs) are highly pathogenic and require high biosecurity, which severely limits their study. We found that Sindbis virus (SINV), predominantly transmitted by mosquitoes, can replicate in ticks and be subsequently transmitted, with the potential to serve as a model for studying tick-virus interactions. We found that both larval and nymphal stages of Rhipicephalus haemaphysaloides can be infected with SINV-wild-type (WT) when feeding on infected mice. SINV replicated in two species of ticks (R. haemaphysaloides and Hyalomma asiaticum) after infecting them by microinjection. Injection of ticks with SINV expressing enhanced Green Fluorescent Protein (eGFP) revealed that SINV-eGFP specifically aggregated in the tick midguts for replication. During blood-feeding, SINV-eGFP migrated from the midguts to the salivary glands and was transmitted to a new host. SINV infection caused changes in expression levels of tick genes related to immune responses, substance transport and metabolism, cell growth and death. SINV mainly induced autophagy during the early stage of infection; with increasing time of infection, the level of autophagy decreased, while the level of apoptosis increased. During the early stages of infection, the transcript levels of immune-related genes were significantly upregulated, and then decreased. In addition, SINV induced changes in the transcription levels of some functional genes that play important roles in the interactions between ticks and tick-borne pathogens. These results confirm that the SINV-based transmission model between ticks, viruses, and mammals can be widely used to unravel the interactions between ticks and viruses.


Asunto(s)
Garrapatas , Virus , Animales , Ratones , Virus Sindbis/genética , Mosquitos Vectores , Mamíferos
7.
Biomed Environ Sci ; 37(3): 294-302, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582993

RESUMEN

Objective: Viral encephalitis is an infectious disease severely affecting human health. It is caused by a wide variety of viral pathogens, including herpes viruses, flaviviruses, enteroviruses, and other viruses. The laboratory diagnosis of viral encephalitis is a worldwide challenge. Recently, high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections. Thus, In this study, we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods: We designed nine pairs of specific polymerase chain reaction (PCR) primers for the 12 viruses by reviewing the relevant literature. The detection ability of the primers was verified by software simulation and the detection of known positive samples. Amplicon sequencing was used to validate the samples, and consistency was compared with Sanger sequencing. Results: The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×, and the sequence lengths were consistent with the sizes of the predicted amplicons. The sequences were verified using the National Center for Biotechnology Information BLAST, and all results were consistent with the results of Sanger sequencing. Conclusion: Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis. It is also a useful tool for the high-volume screening of clinical samples.


Asunto(s)
Encefalitis Viral , Virus , Humanos , Encefalitis Viral/diagnóstico , Virus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa , ADN Viral
8.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612542

RESUMEN

The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.


Asunto(s)
Epilepsia , Virosis , Virus , Humanos , Anticonvulsivantes/uso terapéutico , Enfermedades Neuroinflamatorias , Virosis/complicaciones , Virosis/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Biomarcadores
9.
Microbiome ; 12(1): 72, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600530

RESUMEN

BACKGROUND: Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS: Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS: The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.


Asunto(s)
Quirópteros , Virus , Animales , Animales Salvajes , Genoma Viral/genética , Filogenia , Recombinación Genética , Roedores , Uganda/epidemiología
10.
Nat Commun ; 15(1): 3228, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622147

RESUMEN

Seamounts are globally distributed across the oceans and form one of the major oceanic biomes. Here, we utilized combined analyses of bulk metagenome and virome to study viral communities in seamount sediments in the western Pacific Ocean. Phylogenetic analyses and the protein-sharing network demonstrate extensive diversity and previously unknown viral clades. Inference of virus-host linkages uncovers extensive interactions between viruses and dominant prokaryote lineages, and suggests that viruses play significant roles in carbon, sulfur, and nitrogen cycling by compensating or augmenting host metabolisms. Moreover, temperate viruses are predicted to be prevalent in seamount sediments, which tend to carry auxiliary metabolic genes for host survivability. Intriguingly, the geographical features of seamounts likely compromise the connectivity of viral communities and thus contribute to the high divergence of viral genetic spaces and populations across seamounts. Altogether, these findings provides knowledge essential for understanding the biogeography and ecological roles of viruses in globally widespread seamounts.


Asunto(s)
Virus , Filogenia , Océanos y Mares , Ecosistema , Genes Virales
11.
Genome Biol ; 25(1): 97, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622738

RESUMEN

BACKGROUND: As most viruses remain uncultivated, metagenomics is currently the main method for virus discovery. Detecting viruses in metagenomic data is not trivial. In the past few years, many bioinformatic virus identification tools have been developed for this task, making it challenging to choose the right tools, parameters, and cutoffs. As all these tools measure different biological signals, and use different algorithms and training and reference databases, it is imperative to conduct an independent benchmarking to give users objective guidance. RESULTS: We compare the performance of nine state-of-the-art virus identification tools in thirteen modes on eight paired viral and microbial datasets from three distinct biomes, including a new complex dataset from Antarctic coastal waters. The tools have highly variable true positive rates (0-97%) and false positive rates (0-30%). PPR-Meta best distinguishes viral from microbial contigs, followed by DeepVirFinder, VirSorter2, and VIBRANT. Different tools identify different subsets of the benchmarking data and all tools, except for Sourmash, find unique viral contigs. Performance of tools improved with adjusted parameter cutoffs, indicating that adjustment of parameter cutoffs before usage should be considered. CONCLUSIONS: Together, our independent benchmarking facilitates selecting choices of bioinformatic virus identification tools and gives suggestions for parameter adjustments to viromics researchers.


Asunto(s)
Benchmarking , Virus , Metagenoma , Ecosistema , Metagenómica/métodos , Biología Computacional/métodos , Bases de Datos Genéticas , Virus/genética
12.
Virus Res ; 344: 199368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588924

RESUMEN

Several viruses are now known to code for deubiquitinating proteases in their genomes. Ubiquitination is an essential post-translational modification of cellular substrates involved in many processes in the cell, including in innate immune signalling. This post-translational modification is regulated by the ubiquitin conjugation machinery, as well as various host deubiquitinating enzymes. The conjugation of ubiquitin chains to several innate immune related factors is often needed to induce downstream signalling, shaping the antiviral response. Viral deubiquitinating proteins, besides often having a primary function in the viral replication cycle by cleaving the viral polyprotein, are also able to cleave ubiquitin chains from such host substrates, in that way exerting a function in innate immune evasion. The presence of viral deubiquitinating enzymes has been firmly established for numerous animal-infecting viruses, such as some well-researched and clinically important nidoviruses, and their presence has now been confirmed in several plant viruses as well. Viral proteases in general have long been highlighted as promising drug targets, with a current focus on small molecule inhibitors. In this review, we will discuss the range of viral deubiquitinating proteases known to date, summarise the various avenues explored to inhibit such proteases and discuss novel strategies and models intended to inhibit and study these specific viral enzymes.


Asunto(s)
Enzimas Desubicuitinizantes , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Enzimas Desubicuitinizantes/genética , Humanos , Proteasas Virales/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Animales , Replicación Viral , Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Virus/efectos de los fármacos , Virus/enzimología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ubiquitina/metabolismo , Inmunidad Innata
13.
Proc Natl Acad Sci U S A ; 121(17): e2321170121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630724

RESUMEN

Global control of infectious diseases depends on the continuous development and deployment of diverse vaccination strategies. Currently available live-attenuated and killed virus vaccines typically take a week or longer to activate specific protection by the adaptive immunity. The mosquito-transmitted Nodamura virus (NoV) is attenuated in mice by mutations that prevent expression of the B2 viral suppressor of RNA interference (VSR) and consequently, drastically enhance in vivo production of the virus-targeting small-interfering RNAs. We reported recently that 2 d after immunization with live-attenuated VSR-disabled NoV (NoVΔB2), neonatal mice become fully protected against lethal NoV challenge and develop no detectable infection. Using Rag1-/- mice that produce no mature B and T lymphocytes as a model, here we examined the hypothesis that adaptive immunity is dispensable for the RNAi-based protective immunity activated by NoVΔB2 immunization. We show that immunization of both neonatal and adult Rag1-/- mice with live but not killed NoVΔB2 induces full protection against NoV challenge at 2 or 14 d postimmunization. Moreover, NoVΔB2-induced protective antiviral immunity is virus-specific and remains effective in adult Rag1-/- mice 42 and 90 d after a single-shot immunization. We conclude that immunization with the live-attenuated VSR-disabled RNA virus vaccine activates rapid and long-lasting protective immunity against lethal challenges by a distinct mechanism independent of the adaptive immunity mediated by B and T cells. Future studies are warranted to determine whether additional animal and human viruses attenuated by VSR inactivation induce similar protective immunity in healthy and adaptive immunity-compromised individuals.


Asunto(s)
Vacunas contra la Influenza , Vacunas Virales , Virus , Animales , Humanos , Ratones , Linfocitos T , Interferencia de ARN , Vacunas Atenuadas , Proteínas de Homeodominio , Anticuerpos Antivirales
14.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619867

RESUMEN

Fusariviridae is a family of mono-segmented, positive-sense RNA viruses with genome sizes of 5.9-10.7 kb. Most genomic RNAs are bicistronic, but exceptions have up to four predicted ORFs. In bicistronic genomes, the 5'-proximal ORF codes for a single protein with both RNA-directed RNA polymerase (RdRP) and RNA helicase (Hel) domains; little is known about the protein encoded by the second ORF. Fusarivirids do not appear to form virions. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Fusariviridae, which is available at ictv.global/report/fusariviridae.


Asunto(s)
Virión , Virus , Virión/genética , Genómica , Sistemas de Lectura Abierta , ARN
15.
Am J Reprod Immunol ; 91(4): e13844, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627916

RESUMEN

Preeclampsia is one of the most common disorders that poses threat to both mothers and neonates and a major contributor to perinatal morbidity and mortality worldwide. Viral infection during pregnancy is not typically considered to cause preeclampsia; however, syndromic nature of preeclampsia etiology and the immunomodulatory effects of viral infections suggest that microbes could trigger a subset of preeclampsia. Notably, SARS-CoV-2 infection is associated with an increased risk of preeclampsia. Herein, we review the potential role of viral infections in this great obstetrical syndrome. According to in vitro and in vivo experimental studies, viral infections can cause preeclampsia by introducing poor placentation, syncytiotrophoblast stress, and/or maternal systemic inflammation, which are all known to play a critical role in the development of preeclampsia. Moreover, clinical and experimental investigations have suggested a link between several viruses and the onset of preeclampsia via multiple pathways. However, the results of experimental and clinical research are not always consistent. Therefore, future studies should investigate the causal link between viral infections and preeclampsia to elucidate the mechanism behind this relationship and the etiology of preeclampsia itself.


Asunto(s)
Preeclampsia , Virosis , Virus , Embarazo , Recién Nacido , Femenino , Humanos , Preeclampsia/metabolismo , Placentación , Trofoblastos/metabolismo , Virosis/complicaciones , Virosis/metabolismo , Placenta/metabolismo
16.
Nat Biotechnol ; 42(4): 539-541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38632451

Asunto(s)
Genoma , Virus
17.
Sci Adv ; 10(15): eadk1954, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598627

RESUMEN

The globally distributed marine alga Emiliania huxleyi has cooling effect on the Earth's climate. The population density of E. huxleyi is restricted by Nucleocytoviricota viruses, including E. huxleyi virus 201 (EhV-201). Despite the impact of E. huxleyi viruses on the climate, there is limited information about their structure and replication. Here, we show that the dsDNA genome inside the EhV-201 virion is protected by an inner membrane, capsid, and outer membrane. EhV-201 virions infect E. huxleyi by using fivefold vertices to bind to and fuse the virus' inner membrane with the cell plasma membrane. Progeny virions assemble in the cytoplasm at the surface of endoplasmic reticulum-derived membrane segments. Genome packaging initiates synchronously with the capsid assembly and completes through an aperture in the forming capsid. The genome-filled capsids acquire an outer membrane by budding into intracellular vesicles. EhV-201 infection induces a loss of surface protective layers from E. huxleyi cells, which enables the continuous release of virions by exocytosis.


Asunto(s)
Haptophyta , Phycodnaviridae , Virus , Haptophyta/metabolismo , Phycodnaviridae/genética , Virión , Clima
18.
Cell Commun Signal ; 22(1): 239, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654309

RESUMEN

Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.


Asunto(s)
Bacterias , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Bacterias/efectos de los fármacos , Animales , Viroterapia Oncolítica , Virus/efectos de los fármacos
19.
Rev. esp. quimioter ; 37(2): 134-148, abr. 2024.
Artículo en Inglés | IBECS | ID: ibc-231647

RESUMEN

Respiratory syncytial virus (RSV) is a major public health problem that has undergone significant changes in recent years. First of all, it has become easier to diagnose with highly reliable and rapidly available confirmatory tests. This has led to a better understanding of its epidemiology and RSV has gone from being a disease of the pediatric age group, severe only in infants and immunosuppressed children, to being a common disease in people of all ages, particularly important in patients of advanced age or with immunosuppressive diseases. Recent therapeutic and prophylactic advances, both with long-lasting monoclonal antibodies and vaccines, are another reason for satisfaction. For these reasons, the COVID and Emerging Pathogens Committee of the Illustrious Official College of Physicians of Madrid (ICOMEM) has considered it pertinent to review this subject in the light of new knowledge and new resources for dealing with this infection. We have formulated a series of questions that we believe will be of interest not only to members of the College but also to any non-expert in this subject, with a particular focus on the situation of RSV infection in Spain. (AU)


El Virus Respiratorio Sincitial (VRS), es un problema de salud pública de primera magnitud que en años recientes ha experimentado cambios muy importantes. En primer lugar, se ha producido una mayor facilidad diagnóstica con pruebas confirmatorias altamente fiables y rápidamente disponibles. Esto ha permitido conocer mejor su epidemiología y VRS ha pasado de ser una enfermedad de la edad pediátrica, grave sólo en lactantes y niños inmunodeprimidos, a ser una enfermedad común en personas de toda edad, particularmente importante en pacientes de edades avanzadas o con enfermedades que inmunodeprimen. Los avances terapéuticos y profilácticos, recientes, tanto con anticuerpos monoclonales de larga duración como con vacunas, constituyen otro motivo de satisfacción. Por estos motivos, el Comité de COVID y de patógenos emergentes del Ilustre Colegio Oficial de Médicos de Madrid (ICOMEM) ha considerado pertinente revisar este tema, a la luz de los nuevos conocimientos y de los nuevos recursos para afrontar esta infección. Hemos formulado una serie de preguntas que creemos de interés no sólo para los colegiados si no para cualquier persona no experta en este tema, con una vista particular en la situación de la infección por VRS en España. (AU)


Asunto(s)
Humanos , Virus , Neumonía , Vacunas , Anticuerpos Monoclonales , Ribavirina , Anticuerpos , Huésped Inmunocomprometido , España
20.
Sci Rep ; 14(1): 6722, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509265

RESUMEN

An emerging intervention for control of airborne-mediated pandemics and epidemics is whole-room far-UVC (200-235 nm). Laboratory studies have shown that 222-nm light inactivates airborne pathogens, potentially without harm to exposed occupants. While encouraging results have been reported in benchtop studies and in room-sized bioaerosol chambers, there is a need for quantitative studies of airborne pathogen reduction in occupied rooms. We quantified far-UVC mediated reduction of aerosolized murine norovirus (MNV) in an occupied mouse-cage cleaning room within an animal-care facility. Benchtop studies suggest that MNV is a conservative surrogate for airborne viruses such as influenza and coronavirus. Using four 222-nm fixtures installed in the ceiling, and staying well within current recommended regulatory limits, far-UVC reduced airborne infectious MNV by 99.8% (95% CI: 98.2-99.9%). Similar to previous room-sized bioaerosol chamber studies on far-UVC efficacy, these results suggest that aerosolized virus susceptibility is significantly higher in room-scale tests than in bench-scale laboratory studies. That said, as opposed to controlled laboratory studies, uncertainties in this study related to airflow patterns, virus residence time, and dose to the collected virus introduce uncertainty into the inactivation estimates. This study is the first to directly demonstrate far-UVC anti-microbial efficacy against airborne pathogens in an occupied indoor location.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Coronavirus , Norovirus , Virus , Animales , Ratones , Rayos Ultravioleta , Ambiente Controlado , Desinfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...